渗透氢检测方法研究进展
2024-02-05 16:59:53 作者:周欣,吴大康,成旭,扈俊颖,钟显康 来源:中国腐蚀与防护学报 分享至:

 

 

 

 

氢能产业现已初具规模,目前年氢气产量约为3342万吨,未来40年内,年需求量将达到1.3亿吨[1]。据不完全统计,截至2020年底,我国已建成加氢站120余座,其中86座已投入运营;燃料电池汽车约8000辆,车用氢能不足1万吨[2]。纯氢和掺氢天然气是氢能的两种重要形式,在长距离、大规模的输氢方式中,管道运输是成本最低、且最具发展潜能的一种。目前我国氢气输送管道总长度约为400 km,其中最长的为巴陵—长岭输氢管道,全长约为42 km,压力为4 MPa[3]。据《中国氢能产业基地设施发展蓝皮书》预计,到2030年,我国氢气管线总里程将达到3000 km[4]。开发和利用氢能的关键不仅是运输,储氢同样重要。目前我国的储氢形式主要分为高压气态和低温液态储氢,而新型储氢材料,例如镁系、钛系、钒系、稀土系和碳质储氢材料等[5],也在蓬勃发展,实现规模化的应用指日可待。

 

 

 

 

 

管道和设备中氢的来源主要分为3个:一是氢气在运输时,在压力和流速的作用下,与管道内壁发生碰撞分解成氢原子,氢原子吸附并渗透进入钢中;二是储氢时,氢气在压力和温度的作用下分解成氢原子,吸附并进入钢中;三是作为反应原料的氢,在发生部分反应时,会进入到钢材中。氢原子一旦进入材料内部,会使其塑性降低,诱发裂纹或产生滞后断裂,发生氢脆[6]。同时,氢原子与钢中的碳反应生成甲烷,造成钢脱碳,产生微裂纹,导致钢的力学性能发生不可逆的劣化,从而发生氢腐蚀[7]。

 

 

 

 

 

氢脆和氢腐蚀是所有含氢管道和设备都无法避免的问题,因此检测管道或设备中的渗透氢含量及分布对开展防护工作具有十分重要的意义。研究氢原子在金属微观结构上的扩散和分布,既可以帮助理解氢脆的本质,又有助于现场实时监测管道或设备的渗氢情况,及时找出发生氢损伤的位置,防止事故发生。为此,笔者针对氢的3个来源,系统地综述了目前适用于室内和现场的渗透氢检测方法,总结了各方法的原理、特点和适用范围,并对现有的检测方法提出建议,以期为渗透氢检测方法的发展提供参考。

 

 

 

1 室内检测方法


 

 

室内检测方法通常采用电化学充氢和气相预充氢模拟不同钢材发生的氢渗透行为,以检测氢在管道或设备中的含量、分布和扩散路径。

 

 

 

 

 

1.1 电流法

 

 


 

 

电流法通过记录扩散电流,计算得出扩散氢通量、有效氢扩散系数、氢溶解度等氢渗透参数。依据这些数值可以阐述试样中的微观结构对氢渗透的影响。其原理是通过外加电位将渗透氢氧化成氢离子,通过检测回路中的电流来反映氢含量[8]。

 

 

 

 

 

电流法提供了氢扩散系数、表面氢浓度以及氢通量和时间的关系,依据这些参数可以解释金属材料对于氢脆的敏感性。Mohtadi-Bonab等[9]采用此法对比了X60和X60SS管线钢的氢陷阱数量和渗透性能,结果表明,X60钢的氢扩散系数和可逆氢陷阱数量均大于X60SS钢,从而得出X60钢比X60SS钢更易受到氢脆影响。Xue和Cheng[10]对比了X80管道焊缝和基底的渗透性能,表明与管道基底相比,焊缝热影响区 (HAZ) 氢扩散系数更低,氢捕集效率更高,他们依据这一结果得出结论,HAZ是氢脆最敏感的区域。Zhang等[11]在研究阴极保护对X80钢氢脆的影响时,对试样分别施加了0.1、0.5、1、5和10 mA/cm2的充氢电流。氢渗透曲线表明,0.1、0.5和1 mA/cm2的阳极电流随着充氢时间的增大而增大后趋于平稳,但5和10 mA/cm2的阳极电流随着充氢时间的增大则是先增大后减小。分析认为渗透氢曲线的峰值与试样表面出现的裂纹和鼓泡有关。这表明,当氢浓度达到峰值时,会引起空位浓度的增加,促进鼓泡的成核和生长。当后续氢原子进入基体时,会优先选择发生氢损伤的地方,进一步劣化,降低氢脆敏感性。

 

 

 

 

 

管线钢在生产、施工和使用过程中,会产生较大的应力,改变管线钢的扩散氢浓度、氢扩散系数等参数,从而影响其氢脆敏感性,因此更多的研究工作是采用电流法研究应力对管道内部氢原子的运动和氢陷阱密度的影响。Zhao等[12]采用此法联合慢应变速率拉伸实验研究应力对X80钢的氢扩散系数 (Deff) 的影响,随着施加应力的增大,Deff先增大后减小,分析认为这与晶格膨胀和位错的增加有关。随后,该课题组对比了施加60%和70% σys (屈服应力) 前后的Deff,结果表明前者在撤销应力后,Deff可以恢复到初始数值,而后者却不能。这表明前者发生了弹性应变,后者是塑性应变。Sun和Cheng[13]采用此法研究应力对X80钢焊缝区的氢渗透和分布的影响,当施加的应力从0.7σys增大到1.1σys时,焊缝区的氢陷阱密度从1.48×1027/m3增大到3.05×1027/m3,亚表面氢浓度从16.20 mol/m3增大到20.35 mol/m3,结合Zhao等[12]的结论,可认为焊缝区发生的塑性应变加强了氢渗透和捕获氢的数量。

 

 

 

 

 

由于电流法的实验装置简易、操作简单,且检测时间较短,是室内氢检测方法中最常用的方法,目前已有大量成熟的研究,主要集中在通过检测氢浓度和扩散特性,评估材料的氢脆特性,或者是与热脱附法、氢-微接触打印技术等方法搭配使用,为其提供氢扩散系数等参数,方便后续研究。电流法的精度最小可达到nA/cm2 [14],但该方法只反映了样品表面的平均氢浓度,无法提供氢在界面上的分布信息,不具备局部分辨功能。若想研究特定位置的氢渗透特性,则需要联合一些具有局部分辨功能的方法,例如扫描Kelvins探针-原子显微镜技术等。

 

 

 

 

 

1.2 熔融萃取法

 

 


 

 

熔融萃取法通过加热试样产生氢气,与检测室中的氮气流混合,依据混合气体的热导率变化,计算试样中的氢浓度,常用于检测材料的总氢和可扩散氢浓度[15]。

 

 

 

 

 

Depover等[16]采用此法检测低碳钢诱发的不同微观组织的总氢浓度和扩散氢浓度。结果表明,珠光体的总氢浓度 (9.69 mg/kg) 虽然介于贝氏体 (8.71 mg/kg) 和马氏体 (10.53 mg/kg) 之间,但扩散氢浓度 (5.10 mg/kg) 和氢扩散距离却是三相之中最高,这表明珠光体更易受到氢脆影响。他们后续在研究碳化物对氢捕获能力的影响[17-19]时,采用此法测定了在淬火、淬火和回火条件下的总氢浓度和扩散氢浓度,这为他们得出“随着碳化物的含量增加,捕获的氢量增加”的结论提供依据。

 

 

 

 

 

熔融萃取法和热脱附法都是通过加热使材料内部的氢气溢出,从而检测氢浓度,二者的区别在于:熔融萃取法在特定的充氢条件下,评估试样的氢饱和时间,验证某些微观组织能否捕获更多的氢,而热脱附法是检测材料中潜在的氢陷阱[20]。在大量文献中,二者经常联合使用。相较于热脱附法,熔融萃取法操作更简单,检测较快[15],但得到的是平均氢浓度,不具备局部分辨能力,无法检测特定微观结构 (晶界、位错等) 的氢分布。

 

 

 

 

 

1.3 热脱附法 (TDS)

 

 


 

 

TDS是研究金属材料中氢陷阱特性、氢分布及含量的常用手段。其原理为试样在加热炉内以恒定速率加热,在加热过程中质谱仪根据荷质比对电离的氢气进行加速、分离及检测,最后,通过数据采集及处理系统记录脱附气体情况[21]。氢从试样表面的析出速率与温度之间的关系曲线为热脱附谱线。

 

 

 

 

 

TDS依据脱附峰的温度,可以得到对应的氢脱附激活能,从而识别不同种类的氢陷阱。常见的氢陷阱及其激活能见表1。

 

 

 

表1   常见的氢陷阱及其激活能

Table 1  Common hydrogen traps and their trapping energies

 

 

 

 

 

 

 

除了识别氢陷阱种类,TDS还能依据氢脱附曲线下的面积判断脱附氢量。Yagodzinskyy等[34]采用此法检测氢在3种奥氏体不锈钢 (310、301LN和201) 中的溶解度。通过观察氢脱附曲线,发现310不锈钢的脱附峰面积最大,表明脱附氢量最多,氢的溶解度最大。Yamabe等[35]对低碳钢试样分别施加5%和40%的冷加工处理,由于位错和空位含量不同,40%冷加工的试样的脱附峰面积明显更大,氢脱附量明显更多。

 

 

 

 

 

TDS是检测氢浓度和氢陷阱的重要方法,常与疲劳裂纹扩展实验、慢应变速率拉伸实验和熔融萃取法等联合使用。目前,TDS虽在大量文献中使用,但仍有问题尚待解决。首先,TDS需要仔细的样品制备 (表面氧化或损伤都会影响测量结果)、长时间的充氢实验和几天的固化时间,才能确保扩散氢溢出[36]。其次,TDS需在超高真空条件下操作,对设备要求较高。最后,数据处理难度较大。数据分析的有效性基于选取的模型是否合适,目前氢脱附模型普适性较低,还不能解决氢陷阱的所有问题。当几种陷阱的脱附温度区间相近或重叠时,很难直接辨别其种类[21]。

 

 

 

 

 

1.4 氢-微接触打印技术 (HMP)

 

 


 

 

HMP是一种间接显示氢分布的测试方法,最早在1982年由Pérez和García[37]提出,随后被广泛使用。其原理为氢置换感光乳剂 (含有AgBr晶体) 中的Ag+产生银颗粒,并在局部区域沉积,结合扫描电子显微镜 (SEM) 可以观察到银颗粒的分布[38]。目前,类似方法已经用于检测缝隙腐蚀产生的渗透氢[39]。

 

 

 

 

 

HMP常用于检测氢在晶界、相界和夹杂物等缺陷处的分布。Ohmisawa等[40]采用此法对缺陷处捕获的氢进行了可视化研究,他们对含有铁素体和珠光体的两相低碳钢进行缺口拉伸和三点弯曲实验,以增加其缺陷密度。在对试样充氢后,通过SEM观察,银颗粒主要聚集在应变集中区、晶界和珠光体附近。Ishikawa等[41]采用此法研究了微观结构对氢在晶界分布的影响,经淬火、淬火和回火处理的试样,银颗粒主要聚集在板条边界上,先奥氏体上很少。此外,随着对试样施加的预应力达到20%,在晶界聚集的银颗粒数量逐渐减少,这是由于预应变诱导的位错数量增加,捕获的氢原子数量随之增加,因此氢在晶界的分布减少。另外,他们还观察到试样在回火后,在晶界聚集的银颗粒数量会增加,这是由于回火会使位错密度减小。因此,氢在晶界分布比例相应增大。由此可见,晶格缺陷对于氢在晶界的分布有很强的影响。

 

 

 

 

 

同时,该方法也可用于显示氢扩散的路径。Jack等[42]采用此法观察X65钢的氢扩散路径,银颗粒主要在晶界和相界面聚集,而氢在晶界的扩散最为突出。Thomas和Szpunar[43]采用此法观察氢在X70钢中的扩散路径,银颗粒按照晶粒、晶界、三联结和渗碳体的顺序逐渐聚集,且渗碳体中银颗粒数量最多,这表明渗碳体最易于氢扩散。Mohtadi-Bonab等[44]在对比X60和X70钢的氢致开裂行为时,采用此法观察了两种钢的氢扩散路径,结果表明氢优先沿着晶界扩散,再次验证了Jack等[42]的结论。Koyama等[45]依据HMP原理改进检测装置,原位观察氢通量对氢扩散的影响。他们对试样背面充氢后,观察到银颗粒首先沿着晶界出现,随后在晶格内部呈不均匀分布,且随着时间延长,高角度晶界的银颗粒数量逐渐大于低角度晶界。以上表明,通过观测银颗粒出现位置的顺序,可以推测出氢的扩散路径。

 

 

 

 

 

HMT通过简单的置换反应反映了氢在微观组织的分布和扩散路径,常和电流法、TDS联合使用。该方法操作简单,无需特定的装置,配合光学和电子显微镜 (SEM、电子背散射衍射 (EBSD) 等) 可以实现多尺度下样品表面渗透氢分布检测[46]。但其空间分辨率只能达到微米级,且无法实现时间上的连续观测[47],即氢扩散的动力学过程,有较大的局限性。同时,银颗粒的来源有一定模糊性,Ag+也可以与Fe反应产生银颗粒,因此无法确定银颗粒完全是由氢置换产生。

 

 

 

 

 

1.5 扫描Kelvins探针-原子显微镜技术 (SKPFM)

 

 


 

 

SKPFM技术结合了Kelvins探针 (SKP) 和原子力显微镜 (AFM) 技术。其原理是通过检测探针和样品之间的接触电势差 (CPD) 的变化揭示氢分布[47],由于氢会降低试样表面的功函数,当对探针施加的电量恒定时,贫富氢区的CPD变化趋势是截然不同的,即渗氢量越多,CPD越大,如下式:


式中,是针尖的功函数,是样品的功函数,e是电子的电荷,Vtip是探针的电势,Vsample是试样的电势,CPD为接触电势差。


 

 

 

 

 

SKPFM的优势之一是可以连续测量材料某一位置的氢分布,由此得出该位置的扩散动力学行为。Wang等[48]对马氏体时效钢连续充氢24 h后,试样表面出现白色亮点,而这些亮点的电位要高于其他区域。随后,他们对该区域进行连续检测,随着时间的推移,亮点的强度逐渐变弱,即试样表面的CPD减小,近表面氢浓度减小。郑津洋教授团队采用连续的SKPFM扫描做了大量研究,结果表明氢在奥氏体不锈钢的扩散速度与晶向有关[49],即氢在 (001) 和 (101) 晶向的扩散速度比 (111) 晶向快,但在 (001) 和 (101) 晶向之间却没有明显差异。他们后续研究了氢在马氏体 (α) 和奥氏体 (γ) 中的扩散行为[50],他们以α为a点、靠近α的γ为b点以及远离α的γ为c点。充氢41.5 h之前,a点的CPD最高;之后,b点电位逐渐成为最大。由此说明,在充氢饱和 (41.5 h) 之前,马氏体中的氢逐渐向奥氏体扩散并积累,达到阈值后,近表面的氢开始脱附,氢浓度逐渐降低,CPD也相应减小。随后,他们又研究了氢在孪晶界中α的扩散行为[51],结果表明含有α的孪晶界为氢扩散提供了一条快速通道,氢在此区域富集并加速了孪晶界的分离。以上表明,通过连续观测CPD的变化,可以推测出氢的扩散过程。

 

 

 

 

 

SKPFM另一优势是依据功函数或低电位区研究氢在相界、晶界等缺陷处的富集。Li等[52]采用此法观察充氢后的双相不锈钢,在铁素体/奥氏体晶界处和铁素体内部出现低电位区,即氢诱发的优先形核位点。随着对该区域进行连续扫描,铁素体和奥氏体的功函数发生截然不同的变化,这表示氢在两相中的富集程度并不相同。Wang等[48]采用此法研究氢在裂纹尖端的富集情况,结果表明随着裂纹扩展,电位先增大后减小。这表明在应力的作用下,氢逐步扩散到裂纹尖端,并随着时间富集,因此电位呈增大的趋势;当达到阈值时,氢开始脱附,电位也随之减小,因此出现了先大后小的情况。

 

 

 

 

 

SKPFM通过连续检测某一位置的CPD变化,实现对渗透氢的测量,其空间分辨率达到几十纳米,且兼具原位、非扰动和超灵敏特性,具有较高的局部分辨功能[53]。同时,可对试样的某个区域进行连续扫描,研究其扩散动力学行为。在室内检测中,常联合EBSD和磁力显微镜 (MFM) 使用。但该方法不适用于外加电流或电位的材料,因为额外的电流/电位会影响探针和试样之间产生的静电力,从而影响CPD,干扰检测结果。

 

 

 

 

 

1.6 二次离子质谱 (SIMS)

 

 


 

 

SIMS是检测氢分布的重要测试手段,主要由离子源、质谱仪、二次离子记录和显示系统组成,其原理[54]为一次离子轰击试样表面后,发生背散射和粒子溅射,射出的二次离子,经分析系统和探测器记录后,在不同的工作模式下,可以得到表面质谱、深层剖面分析图和某一元素分布的二次离子像。常用的SIMS是飞行时间二次离子质谱 (Time-of-Flight SIMS),最先进的ToF-SIMS横向分辨率能达到50~100 nm[55]。

 

 

 

 

 

商用SIMS通常配备二次离子探测器,将灰度次级电子图像与彩色离子图叠加,以识别富氢区域。Sobol等[56]采用此法研究充氘对双相不锈钢微观结构的影响,结果表明当温度控制系统小于-60 ℃时,大部分氘在奥氏体中富集,当温度大于-60 ℃后,氘开始向铁素体扩散并达到饱和。由于顶层的铁素体为氘提供了一条快速扩散的通道,导致部分氘困在奥氏体-铁素体界面,产生鼓泡,引起局部发生形变。随后他们研究了在施加力学载荷下充氘对304L不锈钢微观组织的影响[57],结果表明,充氘后先奥氏体转变为马氏体,同时,在施加载荷后,由于Gorsky效应,部分氘向最高应力区扩散。Takai等[58]通过对晶界、偏析带和非金属夹杂物进行溅射深层剖面测试,得到3种缺陷与基体的H+强度比分别为7.8、5和11,这表明非金属夹杂物的氢捕获能力更强。以上表明,SIMS通过深度剖面分析图和二次离子像等,可以得出氘在不同微观组织的富集情况。

 

 

 

 

 

SIMS在对试样进行溅射深度剖面检测时,会检测到纯氢 (HN) 和背景氢 (HBG) (来自试样表面或SIMS腔室中存在的水分、碳氢化合物或其他有机物的氢) 的强度,由于HBG的氢强度高于HN,因此会干扰HN的测量[59]。大量文献采取充氘来避免HBG的影响,但这种方法并不贴合实际工况,且氘的扩散系数等物理性质与氢的并非完全相同,所以会存在误差。Awane等[59]以充氢的316L不锈钢为例,利用SIMS的溅射深度剖面图提出了一种减少和估算HBG强度的方法。他们先是采取硅溅射法减少HBG,随后分别测定充氢和未充氢试样在0、27.2和484.3 h的氢强度,通过估算未充氢样品的氢强度随时间的变化来确定充氢样品的HBG强度,总氢强度减去HBG强度即为HN强度。但该方法只能大概估算HBG强度,所以误差不可避免。

 

 

 

 

 

SIMS是检测氢分布比较直观的方法,二维空间分辨率为微米级,三维空间分辨率最低可达到50~100 nm,目前该技术常与高分辨率扫描电镜 (HR-SEM) 联合使用[60],进一步提高了图像质量。但该方法仍有一些局限性,首先,在原理上可以定量检测金属近表面的氢含量,但要达到理想的空间分辨率和准确度,还需改进设备和建立能够排除背景氢影响的方法[47]。其次,由于氢在铁素体中的扩散系数较大,溶解度较低,在常温下检测时,氢很容易发生解吸,因此,对于这类试样需要增加一个低温冷却系统,阻止氢发生脱附。

 

 

 

 

 

1.7 原子探针技术 (APT)

 

 


 

 

APT可以直观反映出试样内部可能存在的纳米结构 (如位错、晶界等),并相对真实地显示出不同元素原子的三维空间分布,是目前空间分辨率最高的测试技术[61]。其原理为对针状试样尖端施加电压,当电场达到尖端原子离子化的阈值时,离子在电场极向的作用下飞向探测器端,结合测得的时间和位置坐标等信息,可以得到离子的质谱峰和不同元素的三维空间分布图[62]。

 

 

 

 

 

高强度钢 (如X60、X70和X80等) 在加工时会添加一些过渡金属碳化物 (如VC、TiC等),以增加材料强度和抗氢脆性[63],但此类碳化物也会捕获一定量的氢,Takahashi课题组采用APT在金属碳化物对氢的捕获方面做了大量研究。他们采用此法在原子尺度上研究纳米级TiC析出相的氢捕获位点[64]。发现氘主要聚集在较大尺寸的TiC析出相周围,在小于3 nm的TiC析出相周围并未观察到氘,他们猜测捕获位点是TiC表面的碳空位或界面处的失配位错核。他们采用此法观察VC析出相的氢捕获位点[65],通过C/V (碳钒原子比) 确定VC析出相的化学成分是V4C3,他们观察到氘主要聚集在V4C3析出相的内部而非表面,于是推论氘的主要捕获位点是失配位错核,而非表面的空位。2018年该课题组再次将目光聚集在V4C3析出相的氢捕获位点上[66],结果表明,具有较大俘获能的氢陷阱不是失配位错核,而是V4C3析出相 (001晶向) 宽表面上的碳空位。

 

 

 

 

 

目前,APT可以检测试样中的所有组成元素,但直接观察金属中的氢仍具有挑战性。首先,材料内部的氢信号与真空室中的氢信号存在模糊性,目前主要是通过充氘区别背景氢。其次,与力学测试中的氢脱附问题相似,钢中的氢由于高扩散率和低溶解度,会导致显著的解吸现象。通过对样品低温淬火处理,使其持续保持在低温环境中,可以使氘稳定在金属中,这个过程叫低温转移 (cryo-transfer) [55]。但大多数实验室不具备上述两步所需的仪器,因此只有少数成功的研究。Stephenson等[67]演示了一种高真空装置的改造方案,以实现低温转移,但这类装置并不适用于所有的APT。最后,虽然APT的分辨率较高,能从原子级反映元素在材料内部的分布特征和位置信息等,但样品制备条件要求极高、操作复杂,且检测成本较高,大部分实验室还没有普及。因此,APT在氢检测方面仍有大量的工作等待完成。

 

 

 

 

 

1.8 中子照相 (NRG)

 

 


 

 

NRG可以实现材料中氢分布的全尺寸三维映射。其原理为通过检测中子与氢和铁的相互作用截面以检测氢的分布,中子与氢有强相互作用,其相互作用截面为82.02b,明显大于与Fe的 (11.62b) [68],因此贫氢和富氢区的成像会有明显对比。

 

 

 

 

 

Beyer等[69]采用此法结合熔融萃取法研究奥氏体不锈钢的氢脱附行为,结果表明初始温度为室温时,充氢和未充氢样品的初始氢强度分别为13500和13900,对应的强度差为400,此时氢浓度达到140 mg/kg;加热到423 K时,充氢和未充氢样品的氢强度分别为14000和14250,对应的强度差为250,此时氢浓度达到60 mg/kg,与熔融萃取法的结果相比,释放了60%的可扩散氢;当加热到最大值533 K时,对应的强度差为80,此时氢浓度降低到20 mg/kg,已经释放了大部分氢。因此,他们得出结论,随着温度升高,氢逐渐脱附,氢浓度随之降低。

 

 

 

 

 

NRG可以根据光学图像中的明亮区判断氢的富集区域。Griesche等[70]采用冷中子照相法观察充氢后出现的氢致开裂和鼓泡,有3点结论:在鼓泡下方的区域,出现很多裂纹,沿z方向排列;裂纹周围出现明亮区域,这些区域位于试样内部深处;试样表面也检测到了明亮区域,在鼓泡处更加强烈。经验证明亮区域为富氢区。

 

 

 

 

 

虽然目前可以在铁中检测到低至20 mg/kg的氢浓度[71],但在分辨率为微米级的三维空间上,很难检测到如此低的氢浓度。为了量化试样中的氢含量,将灰度转换为残余氢的线性衰减系数Σ,氢密度ρ通过下式计算:

 

 

 

 

 

 

 

 

 

 

式中,uH原子质量,NA为Avogadro常数,σtotal为冷中子的氢相互作用的总截面。

 

 

 

 

 

此外,NRG也可以检测氢的扩散系数。Dabah等[68]采用此法研究双相不锈钢的氢扩散行为,并根据获得的透射图像计算有效扩散系数。在充氢和未充氢试样叠层上标记相同的测量区域,从中提取平均灰度值,通过下式将平均灰度值转换为氢浓度。

 

 

 

 

 

 

 

 

 

 

式中,Isam为氢试样叠层的平均灰度值,Iref是未充氢叠层的平均灰度值,IstdA和IstdB是两种标准试样 (由不同比例的TiH2和SiC混合物制成) 的平均灰度值,CH为氢浓度。最后将Fick方程解和CH行拟合,通过下式计算得出有效扩散系数DH,即4×10-10 m2/s。

 

 

 

 

 

 

 

 

 

 

式中,D是有效氢扩散系数,t是时间,h=α/D为具有比例常数为α的特征扩散长度,C1是试样的初始氢浓度,C0是大气中的氢浓度 (C0=0),MH是渗出氢的总浓度。

 

 

 

 

 

对比其他检测方法,NRG可以原位、无损检测氢分布,且可以完整地展示整个试样中的氢分布。目前已成功检测材料中的氢致裂纹和微孔[70],但想要检测到更加微观的结构中的氢分布,例如不同相或氢陷阱,就需要进一步发展更好的探测器和更高强度的中子源。同时,该方法制样复杂、检测成本较高、空间分辨率只有20~30 μm[46],仍需进一步提升。

 

 

 

2 现场检测方法


 

 

2.1 氢致变色识别法

 

 


 

 

氢致变色识别法是指材料与氢气、氢原子或H+反应后导致其颜色改变,依据颜色变化的程度来反映渗透氢的浓度及分布。本文就铱络合物、聚苯胺和三氧化钨膜进行详细介绍。

 

 

 

 

 

(1) 铱络合物

 

 

 

 

 

Ajito等[72]研究表明涂有铱络合物膜的纯铁试样,在充氢40 h后,膜的颜色由深黄色变为深棕色,因此得出铱配合物与氢气发生反应,可用作渗透氢指示剂。

 

 

 

 

 

(2) 聚苯胺

 

 

 

 

 

本征态 (emeraldine) 或过氧化态 (negraniline) 的聚苯胺与渗透氢发生氧化还原反应时,使聚苯胺的醌环和苯环的比例发生变化[73],导致光学性质改变,氧化态的聚苯胺转变成还原态 (leucoemeraldine),颜色由绿 (蓝) 色变为黄色,颜色变浅处即为渗透氢的分布。

 

 

 

 

 

继铱络合物之后,Kakinuma等[74]发现氢致变色材料聚苯胺。对聚苯胺膜充氢3 h后,观察到其颜色逐渐变淡至浅黄色,与未充氢部分的蓝色呈鲜明对比。同时,聚苯胺对渗透氢足够敏感,检测到的渗透氢密度为0.2 C/m2[75]。该课题组在试样正面滴取NaCl溶液,背面镀镍膜和聚苯胺膜后观察颜色变化[76]。经过10 h后,明显看到聚苯胺膜颜色变浅,且变浅区域与正面腐蚀区域大小和形状一致。这表明聚苯胺对腐蚀产生的氢原子同样敏感。

 

 

 

 

 

(3) 三氧化钨 (WO3)

 

 

 

 

 

WO3是一种常用的电致变色材料,遇H+时颜色会从淡蓝色变为深蓝色。其原理是H+结合电子还原WO3,将W6+还原成W5+,从而生成深蓝色的钨青铜,使颜色发生变化[77],见下式。

 

 

 

 

 

 

 

 

 

 

Sugawara等[77]采用磁控溅射法在镀有钯膜的纯铁试样上溅射沉积一层WO3膜,充氢12 h后,观察到WO3膜颜色逐渐变深至深蓝色,与未充氢部分的浅蓝色形成鲜明对比。两年后,同课题组研究钯膜厚度对WO3膜变色的影响[78],他们观察到钯膜厚度为4 nm时,WO3膜颜色变化最均匀,且变化范围与充氢区域形状最相似。

 

 

 

 

 

对比3种氢致变色材料,铱络合物和WO3只有当氢原子转换成氢气和H+才能检测,而聚苯胺直接遇渗透氢变色,灵敏度明显高于前两者。同时,其精度可达到微米级[74],且具有价格便宜、易于合成、绿色无毒等特点,更适合用于现场检测。将聚苯胺制成膜,贴于管道或设备,通过颜色变化即可检测渗透氢的分布,但该方法的缺点是无法得到氢通量,且变色时间较长。

 

 

 

 

 

 

2.2 氢通量法

 

 


 

 

当氢原子渗入管道壁面时,会在外壁形成微量的氢气,氢通量仪通过测量该部分形成的氢气计算氢通量。

 

 

 

 

 

本工作调研了3种氢通量仪的参数,见表2。

 

 

 

表2   氢通量仪参数

Table 2  Parameter of hydrogen flux method

 

 

 

 

 

 

 

对比以上3种氢通量仪的参数,可以看出氢通量仪的灵敏度较高,在1×10-12 L·cm-2·s-1左右,响应时间在1~3 min,时间较短,符合现场检测要求,同时其外型也很小巧,更加便于工程师在现场复杂环境下测量和阅读氢通量数据。氢通量仪的最大氢通量可达到2×10-8 L·cm-2·s-1,一旦发现测试地点的氢通量值过大,可实现对该点的连续监测。

 

 

 

 

 

对于非侵入式的氢检测,可以采用电化学氢通量法,原理与室内检测方法中的电流法类似,通过氢渗透电流大小与管道内壁腐蚀速率的关系曲线,得出管道或设备的内腐蚀程度,该方法更适用于含有酸性介质的油气管道的腐蚀检测 [79]。

 

 

 

 

 

2.3 氢探针法

 

 


 

 

氢探针法的检测原理是当渗透氢穿过探针内部的传感元件时,会在腔体 (空腔) 内复合成氢气,由于氢气无法渗透进钢中,因此会在腔中积累使氢气分压不断增大,压力表示数增大。已知氢探针腔的体积和扩散发生的截面积,通过理想气体定律可以计算出氢通量。

 

 

 

 

 

本工作调研了3种氢探针的参数,见表3。

 

 

 

表3   氢探针参数

Table 3  Parameter of hydrogen probe method

 

 

 

 

 

 

 

目前工业上使用的氢探针主要分为插入式和非插入式两大类。表3中HY 4000和HY 7000为插入式氢探针,主要由压力计组件、插入杆传感元件组件和空心塞组件构成,可直接插入管道内使用,最大使用压力达到24.82 MPa。HY 7001为非插入式氢探针,主要由仪表组件和外壳两部分组成,外壳可以根据安装位置加工成平面或是适合管道直径的圆角,最大使用压力同样达到24.82 MPa。

 

 

 

选择氢探针类型时,要根据管道或设备的运行压力、安装位置、是否易于拆卸等因素综合考虑。

 

 

 

2.4 氢传感器

 

 


 

 

氢传感器是检测氢气并产生与氢气浓度成比例的电信号传感器,主要分为催化型、电化学型、热导型、电阻型、光学型和机械型等[80],目前使用较多的是催化氢传感器、电流型和半导体金属氧化物氢传感器,本文就这3种氢传感器做详细介绍。

 

 

 

 

 

(1) 催化氢传感器

 

 

 

 

 

催化氢传感器由检测元件和补偿元件两部分组成,检测元件中的铂丝在电压的作用下使敏感体温度升高至200 ℃左右,在该温度下,渗透氢复合成的氢气会在催化剂的作用下与氧气反应,使铂丝温度进一步升高,检测元件的电阻随之增大,通过电阻的变化值即可确定渗透氢的浓度。补偿元件主要起温湿度参比作用[81]。

 

 

 

 

 

本工作调研了6种催化氢传感器的参数,见表4。

 

 

 

表4   催化氢传感器参数

Table 4  Parameter of catalytic hydrogen sensor

 

 

 

 

 

 

 

从表4中的数据可以看出,催化氢传感器测量范围较大,最大检测值达到40000 mg/kg,灵敏度较高,响应时间均不超过30 s,反应较快,温度和湿度范围也基本符合现场工况,但该类传感器的缺点是不具备氢气选择性,和甲烷等可燃气体也会反应。

 

 

 

 

 

(2) 电流型氢传感器

 

 

 

 

 

电流型氢传感器的工作原理是:渗透氢复合成的氢气与氧气在传感器的电极上发生氧化还原反应,吸收或释放电荷,产生的电荷通过外电路形成电流,电流与氢气浓度成正比,通过测试电流大小即可判定氢气浓度的高低,即渗透氢的分布[82]。

 

 

 

 

 

本工作调研了6种电流型氢传感器参数,见表5。

 

 

 

表5   电流型氢传感器参数

Table 5  Parameter of electrical current hydrogen sensor

 

 

 

 

 

 

 

从表5中的数据可以看出,电流型氢传感器灵敏度最小达到0.001 μA·mg-1·kg,最大检测值达到40000 mg/kg,响应时间最短小于10 s,温度范围和湿度范围也基本符合现场工况,但该类传感器的缺点是电极寿命有限,工作寿命一般在2~3年,同时工作时需要专供给传感器的电流或电压,不适合安装在易燃易爆的场所,易产生安全隐患。

 

 

 

 

 

(3) 半导体金属氧化物氢传感器

 

 

 

 

 

半导体金属氧化物传感器的工作原理为:氢气到达金属氧化物 (如ZnO、WO3和SnO2等) 半导体表面,与吸附的氧反应并释放电子,使其电阻减小。电导率与氢气浓度成正比,通过电路可将电导率转换为与氢气浓度相对应的输出信号[83]。

 

 

 

 

 

本工作中调研了3种半导体金属氧化物传感器的参数,见表6。

 

 

 

表6   半导体金属氧化物氢传感器

Table 6  Parameter of semiconducting metal–oxide hydrogen sensor

 

 

 

从表6中的数据可以看出,该类氢传感器的测量范围最大达到10000 mg/kg,而催化氢传感器和电流型氢传感器最大检测值能达到40000 mg/kg,温度和湿度检测范围也明显小于前两者,但该类传感器的工作寿命较长,平均寿命在10年左右,缺点是工作时温度较高,易产生火花,同样不适用于易燃易爆场所,易产生安全隐患。

 

 

 

 

 

2.5 现场Kelvins探针 (FKP) 技术

 

 


 

 

FKP仿照SKP的原理[84],通过测量针尖和样品之间的接触电位差判断渗透氢的分布,即渗透氢浓度越高,电位越低,反之则反。

 

 

 

 

 

与SKP只能应用于室内检测相比,FKP既可以与XYZ扫描台相连用于室内检测,也可以安装在管道或设备的外壁用于现场实时检测。由此,FKP将开尔文探针的应用从室内检测的小样品扩展到现场的管道或设备。

 

 

 

 

 

对比以上几种现场检测方法,FKP具有精度高、响应快的特点,可以做到实时检测、无线传输数据和非插入式安装。但当管道或设备带电时,一旦防腐涂层发生破坏,水或其他介质侵入缺陷处,就有可能发生阴极剥离[85, 86],此时FKP测得的局部电位将会受到影响,测量结果也会受到显著干扰。

 

 

 

3 总结和展望


 

 

本文主要介绍了TDS、HMP、SKPFM、SIMS等室内渗透氢检测方法以及氢致变色识别法、氢通量法、氢传感器等现场渗透氢检测方法的原理和应用范围,各方法的特点总结如下:

 

 

 

 

 

(1) 电流法、熔融萃取法和TDS一般联合使用,用于检测材料中的平均氢浓度和潜在的氢陷阱,但不具备局部分辨能力。HMP通过置换反应产生银颗粒,从而反映氢的分布,一般用于观察氢的扩散路径,但空间分辨率只能达到微米级。SKPFM通过连续检测某一位置的CPD变化,观测氢的富集,推测氢的扩散过程,其空间分辨率达到几十纳米,具有较高的局部分辨功能,但无法测定样品表面有外加电流/电位存在时的渗透氢信号。SIMS和APT均是通过质谱法检测氢,可以检测特定微观结构中的氢分布,但APT的精度更高,能达到纳米级,可反映单个氢原子的分布。局限是二者都需要充D减小背景氢的影响,且制样条件要求极高、操作复杂,检测成本较高。NRG可以原位、无损检测完整试样的氢分布,最低检测浓度达到20 mg/kg,但空间分辨率较低,目前还无法检测更加微观的组织结构。

 

 

 

 

 

(2) 氢致变色材料聚苯胺的分辨率达到微米级,遇氢原子颜色变化明显,但无法得到氢通量,且颜色变化时间较长。氢传感器结构简单、灵敏度高、工作范围较广,但不适合安装在易燃易爆场所。氢探针灵敏度高、响应时间短,但要根据管道或设备的运行压力、安装位置、是否易于拆卸等因素综合考虑。氢通量仪检测灵敏、续航能力强、氢检测范围大,能实时、连续监测氢通量的变化。FKP精度高、响应快、安装位置无限制,可以做到实时检测和无线传输数据,但当管道或设备带电时,检测结果会受到显著干扰。

 

 

 

 

 

高效可靠的渗透氢检测技术有利于保障氢能安全,未来在室内检测方面,可结合多种检测方法实现多尺度的氢分布观测,例如将APT、SIMS和NRG联合使用,可实现三维氢分布观测;HMP联合SKPFM可实现观察氢渗透的动力学过程等。在现场检测方面,可简化室内检测装置,设计出更适合现场工况的检测方法,例如仿照SKP原理设计FKP等。氢致变色材料应致力于研发灵敏度和分辨率更高的材料。氢传感器和氢探针在设计方面应更加智能化、小型化,同时要提高灵敏度和氢气选择性。聚焦渗透氢检测方法的发展,深究含氢管道和设备的劣化规律和机理,提出行之有效的控制方法,对推进我国氢能快速发展具有深远意义。

 

 

 

参考文献 

 

[1]Zhang Z, Zhao Y J, Cai N.Technological development status and prospect of hydrogen energy industry in China[J]. Nat. Gas Ind., 2022, 42(5): 156[本文引用: 1]张 智, 赵苑瑾, 蔡 楠.中国氢能产业技术发展现状及未来展望[J]. 天然气工业, 2022, 42(5): 156[本文引用: 1]

[2]Han H M, Yang Z, Wang M, et al.The current situation and prospect of hydrogen production and utilization in China[J]. China Coal, 2021, 47(5): 59[本文引用: 1]韩红梅, 杨 铮, 王 敏 等.我国氢气生产和利用现状及展望[J]. 中国煤炭, 2021, 47(5): 59[本文引用: 1]

[3]Liu J, Zhong C F.Current status and prospects of hydrogen energy development in China[J]. China Energy, 2019, 41(2): 32[本文引用: 1]刘 坚, 钟财富.我国氢能发展现状与前景展望[J]. 中国能源, 2019, 41(2): 32[本文引用: 1]

[4]Yang J, Wang X L, Li Z Z, et al.Present status and discussion of long-distance pipeline hydrogen transportation technology[J]. Pressure Vessel Technol., 2021, 38(2): 80[本文引用: 1]杨 静, 王晓霖, 李遵照 等.氢气长距离管输技术现状与探讨[J]. 压力容器, 2021, 38(2): 80[本文引用: 1]

[5]Ma T X, Gao L Z, Hu M J, et al.Research progress of solid hydrogen storage materials[J]. J. Funct. Mater., 2018, 49: 4001DOI      [本文引用: 1] 马通祥, 高雷章, 胡蒙均 等.固体储氢材料研究进展[J]. 功能材料, 2018, 49: 4001DOI      [本文引用: 1]

[6]Shang J, Lu Y H, Zheng J Y, et al.Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures[J]. Chem. Ind. Eng. Prog., 2021, 40: 5499[本文引用: 1]尚 娟, 鲁仰辉, 郑津洋 等.掺氢天然气管道输送研究进展和挑战[J]. 化工进展, 2021, 40: 5499[本文引用: 1]

[7]Li J F, Su Y, Zhang H, et al.Research progresses on pipeline transportation of hydrogen-blended natural gas[J]. Nat. Gas Ind., 2021, 41(4): 137[本文引用: 1]李敬法, 苏 越, 张 衡 等.掺氢天然气管道输送研究进展[J]. 天然气工业, 2021, 41(4): 137[本文引用: 1]

[8]McBreen J, Nonis L, Beck W.A method for determination of the permeation rate of hydrogen through metal membranes[J]. J. Electrochem. Soc., 1966, 113: 1218DOI      URL     [本文引用: 1]

[9]Mohtadi-Bonab M A, Karimdadashi R, Eskandari M, et al.Hydrogen-induced cracking assessment in pipeline steels through permeation and crystallographic texture measurements[J]. J. Mater. Eng. Perform., 2016, 25: 1781DOI      URL     [本文引用: 1]

[10]Xue H B, Cheng Y F.Hydrogen permeation and electrochemical corrosion behavior of the X80 pipeline steel weld[J]. J. Mater. Eng. Perform., 2013, 22: 170DOI      URL     [本文引用: 1]

[11]Zhang L, Shen H J, Lu K D, et al.Investigation of hydrogen concentration and hydrogen damage on API X80 steel surface under cathodic overprotection[J]. Int. J. Hydrog. Energy, 2017, 42: 29888DOI      URL     [本文引用: 1]

[12]Zhao W M, Zhang T M, He Z R, et al.Determination of the critical plastic strain-induced stress of X80 steel through an electrochemical hydrogen permeation method[J]. Electrochim. Acta, 2016, 214: 336DOI      URL     [本文引用: 2]

[13]Sun Y H, Cheng Y F.Hydrogen permeation and distribution at a high-strength X80 steel weld under stressing conditions and the implication on pipeline failure[J]. Int. J. Hydrog. Energy, 2021, 46: 23100DOI      URL     [本文引用: 1]

[14]Yu Q, Huang Y L, Zheng C B.Hydrogen permeation and corrosion behaviour of high strength steel 35CrMo under cyclic wet-dry conditions[J]. Corros. Eng. Sci. Technol., 2008, 43: 241DOI      URL     [本文引用: 1]

[15]Liu S G, Zhou Y, Wang Z, et al.Progress of detection techniques for hydrogen mapping in steel[J]. Surf. Technol., 2020, 49(8): 1[本文引用: 2]刘神光, 周 耀, 王 正 等.钢中氢分布检测技术进展[J]. 表面技术, 2020, 49(8): 1[本文引用: 2]

[16]Depover T, Wallaert E, Verbeken K.On the synergy of diffusible hydrogen content and hydrogen diffusivity in the mechanical degradation of laboratory cast Fe-C alloys[J]. Mater. Sci. Eng., 2016, 664A: 195[本文引用: 1]

[17]Depover T, Verbeken K.The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys[J]. Corros. Sci., 2016, 112: 308DOI      URL     [本文引用: 1]

[18]Depover T, Verbeken K.Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe-C-V alloys[J]. Mater. Sci. Eng., 2016, 675A: 299

[19]Depover T, Verbeken K.Thermal desorption spectroscopy study of the hydrogen trapping ability of W based precipitates in a Q&T matrix[J]. Int. J. Hydrog. Energy, 2018, 43: 5760DOI      URL     [本文引用: 1]

[20]Laureys A, Claeys L, Pinson M, et al.Thermal desorption spectroscopy evaluation of hydrogen-induced damage and deformation-induced defects[J]. Mater. Sci. Technol., 2020, 36: 1389DOI      URL     [本文引用: 1]

[21]Qu W M, Hua Z L, Li X Y, et al.Application of TDS technology in the study of hydrogen traps in the materials of hydrogen storage vessels[J]. Chem. Ind. Eng. Prog., 2017, 36: 4160DOI      [本文引用: 2] 屈文敏, 花争立, 李雄鹰 等.热脱附谱技术在储氢容器材料氢陷阱研究中的应用研究进展[J]. 化工进展, 2017, 36: 4160DOI      [本文引用: 2]

[22]Tateyama Y, Ohno T.Stability and clusterization of hydrogen-vacancy complexes in α-Fe: an ab initio study[J]. Phys. Rev., 2003, 67B: 174105[本文引用: 1]

[23]Mirzaev D A, Mirzoev A A, Okishev K Y, et al.Hydrogen-vacancy interaction in bcc iron: ab initio calculations and thermodynamics[J]. Mol. Phys., 2014, 112: 1745DOI      URL     [本文引用: 1]

[24]Lee J L, Lee J Y.Hydrogen trapping in AISI 4340 steel[J]. Met. Sci., 1983, 17: 426DOI      URL     [本文引用: 2]

[25]Zhao Y, Lu G.QM/MM study of dislocation—hydrogen/helium interactions in α-Fe[J]. Model. Simul. Mater. Sci. Eng., 2011, 19: 065004[本文引用: 1]

[26]Itakura M, Kaburaki H, Yamaguchi M, et al.The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study[J]. Acta Mater., 2013, 61: 6857DOI      URL     [本文引用: 1]

[27]Choo W Y, Lee J Y.Thermal analysis of trapped hydrogen in pure iron[J]. Metall. Trans., 1982, 13A: 135[本文引用: 2]

[28]Hagi H, Hayashi Y.Effect of dislocation trapping on hydrogen and deuterium diffusion in iron[J]. Trans. Jpn. Inst. Met., 1987, 28: 368DOI      URL     [本文引用: 1]

[29]Takai K, Homma Y, Izutsu K, et al.Identification of trapping sites in high-strength steels by secondary ion mass spectrometry for thermally desorbed hydrogen[J]. J. Jpn. Inst. Met. Mater., 1996, 60: 1155[本文引用: 1]

[30]Bernstein I M.The effect of hydrogen on the deformation of iron[J]. Scr. Metall., 1974, 8: 343DOI      URL     [本文引用: 1]

[31]Lin Y C, Chen D, Chiang M H, et al.Response of hydrogen desorption and hydrogen embrittlement to precipitation of nanometer-sized copper in tempered martensitic low-carbon steel[J]. JOM, 2019, 71: 1349DOI      [本文引用: 1]

[32]Parvathavarthini N, Saroja S, Dayal R K, et al.Studies on hydrogen permeability of 2.25% Cr-1% Mo ferritic steel: correlation with microstructure[J]. J. Nucl. Mater., 2001, 288: 187DOI      URL     [本文引用: 1]

[33]Turnbull A, Hutchings R B.Analysis of hydrogen atom transport in a two-phase alloy[J]. Mater. Sci. Eng., 1994, 177A: 161[本文引用: 1]

[34]Yagodzinskyy Y, Todoshchenko O, Papula S, et al.Hydrogen solubility and diffusion in austenitic stainless steels studied with thermal desorption spectroscopy[J]. Steel Res. Int., 2011, 82: 20DOI      URL     [本文引用: 1]

[35]Yamabe J, Yoshikawa M, Matsunaga H, et al.Hydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environment[J]. Int. J. Fatigue, 2017, 102: 202DOI      URL     [本文引用: 1]

[36]Samanta S, Kumari P, Mondal K, et al.An alternative and comprehensive approach to estimate trapped hydrogen in steels using electrochemical permeation tests[J]. Int. J. Hydrog. Energy, 2020, 45: 26666DOI      URL     [本文引用: 1]

[37]Pérez T E, García J O.Direct observation of hydrogen evolution in the electron microscope scale[J]. Scr. Metall., 1982, 16: 161DOI      URL     [本文引用: 1]

[38]Ichitani K, Kanno M.Visualization of hydrogen diffusion in steels by high sensitivity hydrogen microprint technique[J]. Sci. Technol. Adv. Mater., 2003, 4: 545DOI      URL     [本文引用: 1]

[39]Sundararajan T, Akiyama E, Tsuzaki K.Hydrogen mapping across crevices[J]. Electrochem. Solid-State Lett., 2005, 8: B30DOI      URL     [本文引用: 1]

[40]Ohmisawa T, Uchiyama S, Nagumo M.Detection of hydrogen trap distribution in steel using a microprint technique[J]. J. Alloy. Compd., 2003, 356/357: 290[本文引用: 1]

[41]Ishikawa N, Sueyoshi H, Nagao A.Hydrogen microprint analysis on the effect of dislocations on grain boundary hydrogen distribution in steels[J]. ISIJ Int., 2016, 56: 413DOI      URL     [本文引用: 1]

[42]Jack T A, Pourazizi R, Ohaeri E, et al.Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel[J]. Int. J. Hydrog. Energy, 2020, 45: 17671DOI      URL     [本文引用: 2]

[43]Thomas A, Szpunar J A.Hydrogen diffusion and trapping in X70 pipeline steel[J]. Int. J. Hydrog. Energy, 2020, 45: 2390DOI      URL     [本文引用: 1]

[44]Mohtadi-Bonab M A, Szpunar J A, Razavi-Tousi S S.A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels[J]. Eng. Fail. Anal., 2013, 33: 163DOI      URL     [本文引用: 1]

[45]Koyama M, Yamasaki D, Nagashima T, et al.In situ observations of silver-decoration evolution under hydrogen permeation: effects of grain boundary misorientation on hydrogen flux in pure iron[J]. Scr. Mater., 2017, 129: 48DOI      URL     [本文引用: 1]

[46]Koyama M, Rohwerder M, Tasan C C, et al.Recent progress in microstructural hydrogen mapping in steels: quantification, kinetic analysis, and multi-scale characterisation[J]. Mater. Sci. Technol., 2017, 33: 1481DOI      URL     [本文引用: 2]

[47]Gu C H, Zhu S Y, Zheng J Y, et al.Measurement of local hydrogen distribution in metals based on scanning kelvin probe force microscope[J]. Surf. Technol., 2019, 48(10): 329[本文引用: 3]顾超华, 朱盛依, 郑津洋 等.基于扫描开尔文探针力显微镜的金属中局部氢分布测试方法研究[J]. 表面技术, 2019, 48(10): 329[本文引用: 3]

[48]Wang G, Yan Y, Yang X N, et al.Investigation of hydrogen evolution and enrichment by scanning Kelvin probe force microscopy[J]. Electrochem. Commun., 2013, 35: 100DOI      URL     [本文引用: 2]

[49]Hua Z L, An B, Iijima T, et al.The finding of crystallographic orientation dependence of hydrogen diffusion in austenitic stainless steel by scanning Kelvin probe force microscopy[J]. Scr. Mater., 2017, 131: 47DOI      URL     [本文引用: 1]

[50]Hua Z L, Zhu S Y, Shang J, et al.Scanning Kelvin probe force microscopy study on hydrogen distribution in austenitic stainless steel after martensitic transformation[J]. Mater. Lett., 2019, 245: 41DOI      URL     [本文引用: 1]

[51]Hua Z L, Wang D L, Liu Z L, et al.Hydrogen distribution at twin boundary in austenitic stainless steel studied by scanning Kelvin probe force microscopy[J]. Mater. Lett., 2019, 234: 175DOI      URL     [本文引用: 1]

[52]Li M, Guo L Q, Qiao L J, et al.The mechanism of hydrogen-induced pitting corrosion in duplex stainless steel studied by SKPFM[J]. Corros. Sci., 2012, 60: 76DOI      URL     [本文引用: 1]

[53]Senöz C, Evers S, Stratmann M, et al.Scanning Kelvin probe as a highly sensitive tool for detecting hydrogen permeation with high local resolution[J]. Electrochem. Commun., 2011, 13: 1542DOI      URL     [本文引用: 1]

[54]Zhu Z W, Hou J, Zheng T, et al.Development of secondary ion mass spectrometry[J]. J. South-Central Univ. Nationalities (Nat. Sci. Ed.), 2011, 30: 67[本文引用: 1]祝兆文, 侯 杰, 郑 涛 等.二次离子质谱进展[J]. 中南民族大学学报 (自然科学版), 2011, 30: 67[本文引用: 1]

[55]Li H Y, Niu R M, Li W, et al.Hydrogen in pipeline steels: recent advances in characterization and embrittlement mitigation[J]. J. Nat. Gas Sci. Eng., 2022, 105: 104709DOI      URL     [本文引用: 2]

[56]Sobol O, Holzlechner G, Nolze G, et al.Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) imaging of deuterium assisted cracking in a 2205 duplex stainless steel micro-structure[J]. Mater. Sci. Eng., 2016, 676A: 271[本文引用: 1]

[57]Röhsler A, Sobol O, Hänninen H, et al.In-situ ToF-SIMS analyses of deuterium re-distribution in austenitic steel AISI 304L under mechanical load[J]. Sci. Rep., 2020, 10: 3611DOI      PMID      [本文引用: 1]

[58]Takai K, Seki J, Homma Y.Observation of trapping sites of hydrogen and deuterium in high-strength steels by using secondary ion mass spectrometry[J]. Mater. Trans., JIM, 1995, 36: 1134[本文引用: 1]

[59]Awane T, Fukushima Y, Matsuo T, et al.Highly sensitive detection of net hydrogen charged into austenitic stainless steel with secondary ion mass spectrometry[J]. Anal. Chem., 2011, 83: 2667DOI      PMID      [本文引用: 2]

[60]Sobol O, Holzlechner G, Holzweber M, et al.First use of data fusion and multivariate analysis of ToF-SIMS and SEM image data for studying deuterium-assisted degradation processes in duplex steels[J]. Surf. Interface Anal., 2016, 48: 474DOI      URL     [本文引用: 1]

[61]Liu W Q, Liu Q D, Gu J F.Development and application of atom probe tomography[J]. Acta Metall. Sin., 2013, 49: 1025DOI      [本文引用: 1] 刘文庆, 刘庆冬, 顾剑锋.原子探针层析技术(APT) 最新进展及应用[J]. 金属学报, 2013, 49: 1025DOI      [本文引用: 1]

[62]Shen Q, Wang Z M, Li H, et al.Effects of voltage and laser modes on test results of three-dimensional atom probe[J]. PTCA (Part A: Phys. Test.), 2018, 54: 385[本文引用: 1]沈 琴, 王泽民, 李 慧 等.电压和激光模式对三维原子探针测试结果的影响[J]. 理化检验: 物理分册, 2018, 54: 385[本文引用: 1]

[63]Li L F, Song B, Cheng J, et al.Effects of vanadium precipitates on hydrogen trapping efficiency and hydrogen induced cracking resistance in X80 pipeline steel[J]. Int. J. Hydrog. Energy, 2018, 43: 17353DOI      URL     [本文引用: 1]

[64]Takahashi J, Kawakami K, Kobayashi Y, et al.The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography[J]. Scr. Mater., 2010, 63: 261DOI      URL     [本文引用: 1]

[65]Takahashi J, Kawakami K, Tarui T.Direct observation of hydro-gen-trapping sites in vanadium carbide precipitation steel by atom probe tomography[J]. Scr. Mater., 2012, 67: 213DOI      URL     [本文引用: 1]

[66]Takahashi J, Kawakami K, Kobayashi Y.Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel[J]. Acta Mater., 2018, 153: 193DOI      URL     [本文引用: 1]

[67]Stephenson L T, Szczepaniak A, Mouton I, et al.The Laplace Project: An integrated suite for preparing and transferring atom probe samples under cryogenic and UHV conditions[J]. PLoS One, 2018, 13: e0209211DOI      URL     [本文引用: 1]

[68]Dabah E, Griesche A, Beyer K, et al. In situ measurements of hydrogen diffusion in duplex stainless steels by neutron radiography [A]. KannengiesserT, BabuS S, KomizoY I, et al.In-situ Studies with Photons, Neutrons and Electrons Scattering II[M]. Cham: Springer, 2014: 155[本文引用: 2]

[69]Beyer K, Kannengiesser T, Griesche A, et al.Neutron radiography study of hydrogen desorption in technical iron[J]. J. Mater. Sci., 2011, 46: 5171DOI      URL     [本文引用: 1]

[70]Griesche A, Dabah E, Kannengiesser T, et al.Three-dimensional imaging of hydrogen blister in iron with neutron tomography[J]. Acta Mater., 2014, 78: 14DOI      URL     [本文引用: 2]

[71]Beyer K, Kannengiesser T, Griesche A, et al.Study of hydrogen effusion in austenitic stainless steel by time-resolved in-situ measurements using neutron radiography[J]. Nucl. Instrum. Met. Phys. Res. Sect., 2011, 651: 211[本文引用: 1]

[72]Ajito S, Hojo T, Koyama M, et al.Application of an iridium complex for detecting hydrogen permeation through pure iron[J]. Int. J. Hydrog. Energy, 2020, 45: 25580DOI      URL     [本文引用: 1]

[73]Stejskal J, Kratochvíl P, Jenkins A D.The formation of polyaniline and the nature of its structures[J]. Polymer, 1996, 37: 367DOI      URL     [本文引用: 1]

[74]Kakinuma H, Ajito S, Hojo T, et al.Real-time visualization of hydrogen distribution in metals using polyaniline: an ultrasensitive hydrogenochromic sensor[J]. Adv. Mater. Interfaces, 2022, 9: 2101984DOI      URL     [本文引用: 2]

[75]Kakinuma H, Ajito S, Hojo T, et al.Simultaneous observations of the corrosion behavior of an Fe sheet and the associated hydrogen distribution therein employing a hydrogenochromic sensor[J]. Corros. Sci., 2022, 206: 110534DOI      URL     [本文引用: 1]

[76]Kakinuma H, Ajito S, Hojo T, et al.In situ 2D mapping of hydrogen entry into an Fe sheet under a droplet of NaCl solution using a hydrogenochromic sensor[J]. Int. J. Hydrog. Energy, 2022, 47: 38468DOI      URL     [本文引用: 1]

[77]Sugawara Y, Sakaizawa Y, Shibata A, et al.Detection of hydrogen distribution in pure iron using WO3 thin film[J]. ISIJ Int., 2018, 58: 1860DOI      URL     [本文引用: 2]

[78]Sugawara Y, Saito H.Improved responsivity and sensitivity of hydrogen mapping technique in pure iron using WO3 thin film by control of Pd intermediate layer[J]. ISIJ Int., 2021, 61: 1201DOI      URL     [本文引用: 1]

[79]Liu X L, Zhang D P, Dong Z H, et al.Amperometric hydrogen permeation flux method for online corrosion monitoring of oil and gas pipelines[J]. CIESC J., 2014, 65: 3098DOI      [本文引用: 1] 刘向录, 张德平, 董泽华 等.电化学氢通量法用于油气管线在线腐蚀监测[J]. 化工学报, 2014, 65: 3098DOI      [本文引用: 1]

[80]Hübert T, Boon-Brett L, Black G, et al.Hydrogen sensors–a review[J]. Sens. Actuators, 2011, 157B: 329[本文引用: 1]

[81]Zhang W, Yu D R, Xu Z Z, et al.Study on temperature compensation of hydrogen sensor in catalytic combustion[J]. Transducer Microsyst. Technol., 2020, 39(8): 62[本文引用: 1]张 巍, 于德润, 徐振忠 等.催化燃烧氢气传感器的温度补偿研究[J]. 传感器与微系统, 2020, 39(8): 62[本文引用: 1]

[82]Li Q R.Research progress of hydrogen sensor[J]. Saf. Health Environ., 2021, 21(9): 14[本文引用: 1]李庆润.氢气传感器研究进展[J]. 安全、健康和环境, 2021, 21(9): 14[本文引用: 1]

[83]Chen X M, Yang G Q, Zhao H R, et al.The application of metal oxide semiconductor gas sensors and their developmen[J]. J. Yuxi Norm. Univ., 2020, 36(6): 57[本文引用: 1]陈祥铭, 杨贵钦, 赵海茹 等.金属氧化物半导体气体传感器应用现状和发展情况[J]. 玉溪师范学院学报, 2020, 36(6): 57[本文引用: 1]

[84]Nazarov A, Vucko F, Thierry D.Scanning Kelvin Probe for detection of the hydrogen induced by atmospheric corrosion of ultra-high strength steel[J]. Electrochim. Acta, 2016, 216: 130DOI      URL     [本文引用: 1]

[85]Cui Y Y, Fan Y M, Wei J Z, et al.Research progress of cathodic disbonding of coatings on buried steel pipeline[J]. Mater. Prot., 2016, 49(8): 62[本文引用: 1]崔艳雨, 范玥铭, 危金卓 等.埋地钢质管道防腐蚀层阴极剥离作用的研究进展[J]. 材料保护, 2016, 49(8): 62[本文引用: 1]

 

 

[86]Zhang W, Wang J, Zhao Z Y, et al.Studies on deterioration process of organic coatings using EIS and SKP[J]. Chem. J. Chin. Univ., 2009, 30: 762[本文引用: 1]张 伟, 王 佳, 赵增元 等.有机涂层失效过程的电化学阻抗和电位分布响应特征[J]. 高等学校化学学报, 2009, 30: 762[本文引用: 1]

 

 

免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。

    标签:
相关文章
无相关信息